
Analysing Security and Software Requirements

using Multi-Layered Iterative Model

Sonia1, Archana Singhal2, Jyoti Balwani3
1,3 Department of Computer Science, University of Delhi, Delhi, India

2Department of Computer Science, University of Delhi, IP College for Women, Delhi, India

Abstract— Nowadays, security is of great concern for any
organization developing software systems for various
requirements. Moreover, the same becomes more complicated
during integration of security measures with agile software
development methodology due to its lightweight informal
nature. The requirements engineering is considered as one of
the key element associated with any software development
process. This motivates us to suggest a FLAMIRA model that
provides seamless integration of security needs with software
requirements in an iterative manner. In agile processes,
requirements are recorded in the form of user stories
developed jointly by customer’s representative and the
development team. User stories are useful for agile processes
as they define requirements using a low-cost, user centric and
flexible approach. Keeping this aspect in mind we are
integrating abuser stories for security requirements with user
stories. FLAMIRA is a multi-layered model which shows us
the path to be followed right from the identification of the user
stories till the formulation of abuser stories. This paper
concludes with a set of user stories and abuser stories to be
followed in each iteration.

Keywords— Agile Methods, User Stories, Abuser Stories,
Requirement engineering.

I. INTRODUCTION

In the modern business environment, it is difficult to
keep pace with ever changing requirements of software
development. Thus, agile processes have emerged as most
promising software development methodology which is
adaptive in nature and is able to meet the challenges posed
by traditional development methods. According to some
research papers [1,2] implementation of security is not very
much effective in agile processes since security activities
are lengthy and require too much documentation. In
contrast, agile principles define iterative and short
development life cycles having main emphasis on direct
communication between its customer and the developer.
The main principles which are followed by agile processes
are defined by agile alliance [4] and manifesto for agile
software development [5]. The user story format is
advocated in agile methods due to its lightweight, informal
nature which can be easily specified by customers in their
natural language. Thus to specify software requirements we
suggest user stories.

Security in software development must be given highest
priority to counter the threats posed by attackers. It can be
achieved by mapping security techniques with agile
development right from the beginning of software
development. Thus, in this paper, we have proposed a

multi-layered model, FLAMIRA (Four Layered Agile
Model for Iterative Requirements Analysis) which works
on the requirement engineering phase of software
development lifecycle. The first layer recorded software
requirements as a set of user stories for the complete project.
Then successive layers suggested how these user stories can
be managed in an incremental and iterative agile software
development. Last layer incorporates security requirements
in the form of abuser stories. In this model, the iterative
nature of agile software development has not been
overlooked even during security requirements specification.
The key feature of the proposed model is that it facilitates
iteration planning and supports a shared integration of
security and software requirements within each iteration.

The rest of the paper is organized as follows. Section II
gives brief description of the related work. Section III
summarizes the concept of user stories and abuser stories in
security requirements engineering and brief overview of
agile software development. Section IV presents our
proposed model FLAMIRA for iterative software and
security requirements analysis. A case study and
implementation of proposed model is described in Section
V. The overall conclusion and directions for future work is
given in Section VI.

II. RELATED WORK

The concept of security requirements engineering is
widely available in literature. It describes that for
integrating security requirements with software
development life cycle, the requirement engineers must
discover security requirements along with software
requirements. Many researchers have contributed in various
ways to integrate security and agile processes [6, 7, 8, 9].
Danier Mellado has given a comparative study of proposals
for establishing security requirements for development of
secure software system [10]. Howard Chivers had delivered
a quality work on agile security using incremental security
architecture and also showed agile development for secure
web applications by integrating risk assessment with agile
processes [11, 12]. John Peeters has put forward the idea of
using abuser stories explaining how attacker may abuse the
system and jeopardize stakeholder’s assets with usual user
stories ranked according to perceived threats [10, 13].
Vidar Kongsli has also given security in web applications
using misuse stories with user stories to capture malicious
use of attacks [8].

They all suggested various techniques to implement
security in agile processes. Need for further refinement in

Sonia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1283-1287

www.ijcsit.com 1283

this area motivates us to develop FLAMIRA model. Many
methods are in use to specify security requirements but
none of the above presents a roadmap which can guide
developer about the step by step procedure to be followed
going from software requirements to security requirements.
Focusing on iterative nature of agile software development
our model also categorizes user stories and abuser stories in
different groups which help us to know which security
practice is to be implemented in which iteration.

III. BACKGROUND

This section presents in brief the concepts used in the
proposed model.

A. Agile Requirements Analysis and Planning

During software development requirements emerge and
evolve as software is developed. Agile requirements are
developed in small, bite-sized pieces. For agile methods
user stories are appropriate for describing features and
functional requirements of the software to be built. A user
story is a high-level description of the requirements that
will be valuable for the user or owner of the software.

Abuser stories describe the undesired behaviour of the
system and for analysing security requirements they play a
vital role. Thus, for secure software development, abuser
stories are collected by developer from stakeholders on
index cards. These abuser stories are based on given user
stories, assets and security objective of the given system.
After that remaining abuser stories must be created by
developers and security experts based on their past
experience.

B. Agile Software development

Agile software development (ASD) facilitates software
development at fast pace and ever-changing. Agile
processes promote iterative and incremental development,
minimum documentation and customer satisfaction. In
comparison to traditional methods, ASD is adaptive in
nature supporting continuous changes t any stage of
software development. ASD consisted of various methods.
Some of them are Extreme Programming (XP), Scrum,
Feature Driven Development (FDD) and so on. In ASD
requirements are implemented on priority basis due to its
short development lifecycles. This feature provides iterative
nature to ASD. Thus in ASD most important requirements
are confirmed by user at the starting of each iteration and
those requirements are arranged systematically for
implementation in next iterations. In ASD active user
involvement and cooperation, collaboration, and
communication between all team members is essential.

IV. PROPOSED MODEL FLAMIRA FOR ITERATIVE

SOFTWARE AND SECURITY REQUIREMENTS ANALYSIS

Requirement phase is the most important or crucial phase
of software development. If the interpretation of
requirements in earlier stages of software development is
not systematic then later stages may also suffer. As we are
considering software development through agile
methodology, the issues related to short release cycles or
iterations can’t be neglected during management of

software and security requirements management. Therefore,
in this section, we propose a Four Layered Agile Model for
Iterative Requirements Analysis (FLAMIRA), as shown in
Fig.1. This FLAMIRA provides step by step iterative
procedure to identify agile software and security
requirements.

Fig.1. Four Layered Agile Model for Iterative Requirements Analysis

(FLAMIRA)

A. Layer 1: Defines High Level User Stories for Complete
Project

This layer identifies high level user stories that define the
scope of whole project under development. As agile
software development is iterative in nature, the proposed
model, at this layer, includes requirements of complete
system in first iteration. In successive iterations it includes
requirements which are yet to be analysed for the whole
system. Activities performed at this layer are
1) Initially, requirements in the form of user stories (what

the user wants to achieve from that project) are captured
from the end user for the complete project. These user
stories discussed above are written on an index card
which contains small sentences in natural language and
describes the intent of the story. The most common
format of user story is

“ As a <Role> i want to <Action> so that <Result>”

2) Then, face to face communication between development

team, customer, end users and other stakeholders
clarifies the details of user stories and estimates the
business value of each user story (rank a user story
according to perceived value by the customer) from the
set of user stories for the complete software. Business
values of these stories can vary in each iteration. Like in
one iteration, customer considers a particular user story
important but that user story may become less or more
important in next iteration on the basis of project growth.

3) This layer reconsiders requirements for the remaining

part of the software development process after each
iteration. At the start of each iteration, this facilitates the
customer to add new stories, change the value of
existing story, split stories or eliminate a story [14].

Sonia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1283-1287

www.ijcsit.com 1284

B. Layer 2: User Stories Categorization

After defining user stories the development team
analyses each user story at this layer and assigns

 a cost, measured in development weeks, to each story.
 an iteration number, a number that describes in which

iteration the user story is to be implemented in software
under development.

 estimated delivery date to each user story.

Before assigning iteration number, the team will decide
number of user stories to be implemented in each iteration.
However, this number is not fixed. If stories to be
implemented are lengthy they will consume more time and
less number of stories will be implemented in that iteration.
Keeping the complete project in mind tentative iteration
numbers are assigned based on the output of first layer.
However, this number will be revised at the beginning of
each iteration for the remaining project.

After getting business value from layer 1 and tentative
iteration number from layer 2, these user stories are
categorized into different groups.

In the proposed model, we eliminated the need of onsite
customer or end user participation at this layer. This is the
advantage of FLAMIRA model since we have considered
only those activities at this layer which don’t require
customer collaboration. The motivation behind this is to
reduce customer presence which saves customer’s time. We
have sometimes felt that customers don’t want to go for
agile software development due to all-time presence
constraint. Our aim is to involve customer only whenever
necessary which relaxes the customer from the software
development burden.

C. Layer 3: Detailed analysis of user stories of current
iteration

The user stories to be implemented in each iteration have
been decided at layer 2 by the developer. Here, user stories
are discussed by the developer in collaboration with
customer to clarify and identify the detailed requirements
for the next iteration. Ultimately, agreeable user stories are
collaboratively established by customer and product
developer for the next iterations [15].

At this layer, only user stories to be implemented in
current iteration have been analysed by the developer team
and the customer. Analysis take care some points like

1) There must be minimum interdependency between

stories as far as possible. Since, this dependency makes
the development process complex and also increases its
development time.

2) The user stories must be flexible. Index cards of user
stories describe short description of functionality.
However, detailed planning of its implementation part
should be left on the developer.

3) The proper estimation of the size of each user story
under consideration. Like, if cost of implementing user
story is exceeding the decided value than that user
story card is returned to the customer. The customer

with the development team as per their requirement
will split that user story.

4) After analysing user stories describing features and
functional requirements of the software to be built, this
layer will identify critical assets of the system keeping
its security in mind. These assets will be helpful in
describing the threats in next layer.

After analysis, if customer finds some features that must
not be implemented in current iteration or vice versa then
reshuffling of stories can be done at this layer.

At the end of this layer, an acceptance criteria or test
must be written by the customer with each user story before
the same is implemented at this layer. This is necessary for
testing the goals specified by user story, whether fulfilled or
not.

D. Layer 4: Abuser Story Formulation

To develop a secure software development process,
security requirements are essential to be identified in
proposed FLAMIRA model. The assets identified in layer 3
of FLAMIRA will serve as an input to determine security
requirements in the form of abuser stories. The abuser
stories describe the undesired behaviour of the system in
contrast to user stories which describe the desired output
from the system. The stepwise iterative process of
identifying and integrating abuser stories with user stories is
described below

1) Initially, at this layer, the developer writes some abuser

stories on index cards using assets and security
objectives (like goals, constraints with user stories) in
collaboration with customer and stakeholders. The
abuser stories are written in the same way as user
stories. These abuser stories are based on user stories as
well as assets of given system and can be seen as agile
counterparts of abuse cases or misuse cases [3].

2) Some stories are not related to user stories identified
above but they show attacker’s potential intentions of
damaging the assets. These stories are also placed in
category of abuser stories and identified in this step.

3) In case of abuser stories, ranking or scoring has been
done on the basis of perceived threats posed by them to
customer’s assets. The ranking is based on severity,
risk factor, impact and need of the user stories. Abuser
stories also carry a cost similar to user stories which
amounts to negative business value [13].

4) As in case of user stories, abuser stories are also
implemented iteratively in parallel to user stories in
proposed FLAMIRA model. For iterative development
of software, abuser stories must be categorized into
several iterations. But before categorizing, we must
consider abuser stories for the whole system, as was
done for user stories in layer 1. Then, based on rank
and cost assigned in step 3 for abuser stories, grouping
of these stories into different categories is done and
iteration number to each story is assigned.

5) Now, the developer knows that in which iteration a
particular user story is to be implemented. Thus,
instead of focusing on overall system, developer just

Sonia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1283-1287

www.ijcsit.com 1285

plans for current iteration. It helps him to achieve a
particular release on time securing well defined
features. Baskerville et al. has also said that when the
development is carried out in several development
releases, the developers should be informed in which
release the abuse case is prevented (i.e. countermeasure
is implemented) [12]. Abuser stories are analysed in
the same way as we have analysed user stories in layer
3. Moreover abuser stories are also revised at the
starting of each iteration during the planning phase and
may be updated if necessary. Any number of abuser
stories can be added, deleted, split or combined at the
start of each iteration.

V. CASE STUDY AND ITS IMPLEMENTATION

In this section we go through the development stages of
the suggested FLAMIRA model using a case study
“Automated Teller Machine” (ATM). It is a network
technology that provides several banking services to
customer and security, therefore, becomes a major concern.

We have developed an automated Requirements Analysis
tool (RAT) for implementing the layers of our FLAMIRA
model. To know the efficiency of proposed model, we have
implemented RAT on the above said case study. Suggested
tool has been designed in Java NetBeans IDE 6.5.1.
MYSQL has been used to store the data of our case study.
Designed screens are user friendly and self explanatory.

According to our proposed model, the first step to build
an ATM security system is to identify user stories for the
complete project. Some of the user stories for the ATM
system are

 As an ATM user I want to withdraw money
from my bank account so I can increase my
cash on hand.

 As an ATM user I want to check balance in my
bank account so that I can withdraw or deposit
sufficient money.

 As an ATM operator I want to restock the ATM
with money so the ATM will be available for
customers to withdraw funds.

 As a Bank Business Owner I want to set the
ATM’s withdrawal parameters so the ATM will
provide funds to customers but protect against
fraudulent activities.

Fig. 2 Main Window

Fig 3 Template for storing User and Abuser Stories

To store these user stories in the tool, the developer will

choose the ‘User Stories’ option from the main window as
shown in snapshot of Fig.2. Then, the developer or
customer provides details for each user story in the relevant
fields as shown in Fig. 3. Any number of user stories can be
stored in the RAT using the same procedure.

Then according to layer 2, developer will complete the
cost, assets and tentative iteration number of each user story.
To provide these values, developer will first choose assets
option from view button of main menu. Then required
values can be given in the template as shown in Fig. 4. Next,
the developer can analyse all the user stories at a time using
the button ‘show stories and related information’ as given
in Fig. 4. After analysis, the developer can take appropriate
actions like changing iteration number, splitting of stories
as suggested in layer 3 of proposed model.

Fig. 4 Template for storing Assets and showing all User Stories

Sonia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1283-1287

www.ijcsit.com 1286

 Fig. 5 Summarized View of all User and Abuser Stories with Details

We can store abuser stories by choosing ‘Abuser Stories’
option from main window. For our case study, we have
stored abuser stories of ATM. Here our main assets are
money and user’s secret information like pin number. Some
of the abuser stories for ATM are

 An unauthorized user wants to capture

identification of an authorized user so that he
can use that information for stealing money.

 An unauthorized user wants to take ATM card
of an authorized user without the authorized
user knowledge so that he can make copy of it
or use the card directly for stealing money.

To get summarized view of all the user and abuser stories

with their complete details, the developer will select
‘Created Stories’ option from the view button of main menu
as shown in Fig. 5. This view is useful to analyse all these
stories simultaneously with detailed information’s like

 The deadlines for completion of user stories.
 Which abuser story has been derived from the

corresponding user story?
 In which iteration a user story or an abuser

story is to be implemented?

VI. CONCLUSION AND FUTURE WORK

Agile methods are extremely popular in software
development companies as these methods are informal and
lightweight in nature having short time spans. However,
integration of security in agile methods is still a challenging
task for the organizations. Thus, in this paper, we have
proposed a multi-layered iterative model FLAMIRA which
can analyse security requirements along with software
requirements. The proposed model has used user stories to
identify the software requirements and abuser stories to get
security requirements. This model is able to achieve better
collaboration, communication, customer satisfaction and
concise light weight documentation for better integration
and iterative development. For future work of any system
software, one can consider more advance techniques to
integrate security in agile methods. Also, scope of the
present tool can be expanded to recommend more security
activities in various agile methods.

REFERENCES
[1] Beznosov, K. Extreme Security Engineering: On Employing XP

Practices to Achieve 'Good Enough Security' without Defining It.
First ACM Workshop on Business Driven Security Engineering
(BizSec), Fairfax,VA, 31 October, 2003

[2] Wäyrynen, J., Bodén, M. & Boström, G. Security Engineering and
eXtreme Programming: An Impossible Marriage? In Proceedings of
the 4th Conference on Extreme Programming & Agile Methods.
2004, Springer-Verlag, Lecture Notes in Computer Science. p. 117 .

[3] Sonia, A.Singhal, “Development of Agile Security Framework
using a Hybrid Technique for Requirements Elicitation”,
International Conference on Advances in Computing,
Communication and Control (ICAC3) 2011, Mumbai, India,
Volume 125, Part1, pp. 178-188.

[4] The Agile Alliance Home Page, http://www.agilealliance.org/home.
[5] Beck, K., et al. (2001).Manifesto for Agile Software Development,

February 2001.
[6] Siponen, M., Baskerville, R., Kuivalainen, T.: Integrating security

into agile development methods. In: 38th Annual Hawaii
International Conference on System Sciences, 2005.

[7] Daud, M.I.: Secure Software Development Model: A Guide for
Secure Software Life Cycle. In International MultiConference of
Engineers & Computer Scientists, Hong Kong, 2010.

[8] Kongsli, V.: Towards Agile Security in Web Applications. In the
Proceedings of OOPSLA October 22-26, 2006, Portland, Oregon,
USA, ACM.

[9] Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K.: Extending
XP Practices to Support Security Requirements Engineering.
SESS’06, May 20–21,2006, Shanghai, China.

[10] Mellado, D., Fernández-Medina, E., & Piattini, M. A Comparative
Study of Proposals for Establishing Security Requirements for the
Development of Secure Information Systems.M. Gavrilova et al.:
ICCSA 2006, LNCS 3982, 2006. Springer-Verlag Berlin Heidelberg
2006.

[11] Ge, X., Paige, R.F., Polack, F., Chivers, H., Brooke, P.J. : Agile
Development of Secure Web Applications. ICWE’06, July 11-14,
ACM.

[12] Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B. and Slaughter,
S. Is Internet speed Software Development Different? IEEE
Software (20:6), 2003, pp. 102–107.

[13] Peeters, J.: Agile Security Requirements Engineering. In:
Requirements Engineering for Information Security, 2005.

[14] Pressman, R.S. (2005). Software Engineering A Practitioner’s
Approach, McGraw Hill, 2005.

[15] Paul E.McMohan. 2005. Extending Agile Methods: A Distributed
Project and Organizational Improvement Perspective

Sonia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1283-1287

www.ijcsit.com 1287

